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The methods of integrating the nonlinear Vlasov equation are reviewed, compared 
and interrelations are investigated. Another method is given which allows a truncation 
of the resulting infinite matrix without causing numerical instabilities. Its application to 
the linear and nonlinear Vlasov equation is discussed. It is shown that the cause for 
numerical instability is based on approximating a continuous eigenvalue spectrum 
by a discrete spectrum. 

1. INTRODIJCTION 

One possibility of investigating nonlinear effects in plasma physics is the 
numerical simulation of plasmas [l]. Numerical methods have been used to an 
ever increasing extent recently. One numerical approach is, following the trajec- 
tories of particles directly [2,3]. Another approach produces solutions of the 
Vlasov equation, 

supplemented by Poisson’s equation, 

g = 4mq (1 - j”7QzI). 

* The work was supported in part by the Atomic Energy Commission Grant No. AT(l l-Q-2059. 
It was also supported in part by the Oak Ridge National Laboratory, Union Carbide Corporation 
under contract with the U. S. Atomic Energy Commission. 

i This work was in part performed while one of us (G.K.) was consultant with the Naval 
Research Laboratory in Washington, D. C. 

53 



54 JOYCE, KNORR, AND MElER 

It is sometimes advantageous to transform these equations from the represen- 
tation in x - ZI space. 

There are essentially two transformation methods with which solutions of the 
Vlasov equation have been obtained: The Hermite expansion [4] and the Charac- 
teristic Function method [S]. Both methods have advantages and shortcomings 
and the relation between them has not been investigated previously. 

It is the purpose of this paper to clarify the close connection between them and 
to report several new methods which resulted in increased numerical stability 
and in an appreciable savings of computer time. In Section 2 and 3 we describe 
the Hermite expansion and the characteristic function method. In Section 4 we 
describe a new transform method, the power transform. In Section 5 a new method 
of truncating the resulting infinite system is described and in Section 6 the trun- 
cation is analyzed in terms of the eigenvalue spectrum of a simplified system. 
In Section 7 the method of damping the coefficients of the matrix is presented, 
which can also be used for numerical stabilization. 

2. THE HERMITE EXPANSION 

In the Hermite Expansion the velocity dependence of the distribution function 
is represented by Hermite polynomials 

f(x, 0, t) = f b,(x, t) He,(v) exp(- frv”) 
l-0 

= .E, go z&t) exp(ik,nx) -$- He,(O) exp(- &% 

where 

Z& is the complex conjugate of Z,,, . 
We are using here the notation of Ref. [6] N, is a normalization factor which is 

arbitrary in principle. The orthogonality relation is 

s +O” He,(u) He,(v) exp(- 82~“) 0% = 2/Gv! S,, . 
--m (3) 

It is seen from Eq. (2) that Z,,, is a linear combination of the first t.~ moments of 
the distribution function for mode number n. Thus, only distribution functions 
for which all moments exist can be represented by Eq. (2). Even if all moments off 
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exist, expansion (2) may not exist. It follows from the theory of orthogonal 
functions that the expansion (2) converges in the mean only if 

s y: [f(x, u, t) exp(&Y)]” < 00. 

It is evident that this condition is much more stringent than the existence of all 

moments. 
When the series (2) is inserted into the Vlasov equation and the coefficients for 

each mode and Hermite function are collected, one obtains the following infMe 
system of differential equations: 

and Poisson’s equation becomes 

ik,nE,(t) = -Z,,, 7 . 
0 

The system (4) excels by its ease of computation. It is a system of ordinary 
differential equations of first order and has been used by several investigators [I]. 
As computers handle only finite systems it has to be truncated in the index YE an 
However, truncation in n does not cause any difficulties. 

In order to compute Z,,, for the next time step, Zn,,,+l has to be known. Choosing 
Z,,, z 0, for ZJ > v, results in what appears to be a kind of numerical instability 
after some time. One is thus forced to use a large number of coefficients 
(%z - O(lOO0)) in order to obtain the correct macroscopic quantities for times of 
the order t - 100~;: . We will return to this point later and discuss now the 
method of the characteristic function. 

3. THE CHARACTERISTIC FUNCTION METHOD 

In this method, we employ for reasons described elsewhere [I], a Fourier 
transform in velocity space and write 

f(x, 21, t> = +f .MJ, t) exp(ikon4 

n,=-co 

= z I’y F,( y, t) exp(-ivy) g exp(ikgc+ 
n=-cc --m 
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The Fourier transformation of a distribution function is well known in statistics 
and is called the characteristic function. Inserting Eq. (5) into the Vlasov and 
Poisson equations we obtain the system 

“$ t) + nko W; 0 + F iyiEmyFnl_,( y, t) = 0, 
m?z-m . 
m#n 

(6) 
iE,(t) = --~;%z-~F~(O, t), n # 0, 

where 

F-,(Y, t) = FX- Y, 0”. 

The formal solution can be written as 

FAY, t> = F,(Y - nkot, 0) + mE?m m-l f ~T[Y + nko(7 - t)l 
0 

- &(O, t> Fn-,(Y + nko(t - 4, 4. (7) 

Equation (7) can easily be written as a finite difference scheme, if n is small, i.e., 
if we are interested in cases where only a few modes suffice for an adequate de- 
scription. If one wants to keep many modes, it is advantageous not to decompose 
the distribution function into Fourier modes but to stay in configuration space. 
This approach will be treated in a forthcoming paper by J. Nuehrenberg. 

Similar to the truncation of the Hermite system at v, , we can follow the solution 
of Eqs. (6) and (7) only in a finite interval in the transformed velocity variable y. 
But contrary to the Hermite transformation this causes no difficulties or numerical 
instabilities, if one assumes F(y) to vanish outside -ynz < y < fy, . 

The two methods described appear to be two very different approaches. Yet 
there is a very intimate connection. 

4. THE POWER TRANSFORM 

As is well known, the m-th derivative of a characteristic function F,(y, t) with 
respect to y for y = 0 is proportional to the m-th moment of the distribution 
function 

f 

+* 
--b) Pf,(u, t) du = (-i)” +AY, t> Iy=o - 



NUMERICAL INTEGRATION METHODS OF THE VLASOV EQUATION 57 

We are interested in the first few moments and so we write Fn(y, t) as an expansion 
in powers of y, 

F,(y, t> = 5 a,,(t)gd”exp(- *Y”>- 
v=o 

The coefficient g, is still arbitrary. For the actual computations it has been chosen 
g, = 2~~213v/2 f l)/r(v + 1). With this choice the a, tend to be of the same order 
of magnitude. The exponential factor has been added to enforce convergence of 
the series if it is truncated. 

When series (9) is inserted into Eq. (6) and equal powers of y are collected, one 
obtains a system which is very similar to Eq. (4): 

d, y - nk, I 

We show now that the an,u are equal to the Z,,, in Eq. (4) except for a complex 
factor: According to Eqs. (2), (5), and (9) we can write f,(v, t) in two different ways 

The integral can be written as 

iv -$+ Jl” 2 exp(- ty2 - iyu), 
cc 

and the integration can easily be performed. Using the Rodriguez formula for 
Hermite polynomials we find 

The establishes the close relation between the Hermite transform and the 
characteristic function. 

For symmetric initial conditions, as mostly used by Armstrong [441 the a.. v are 
all real whereas the Z,,, are alternately real and imaginary. 
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5. CUT-OFF PROCEDURE 

When we integrate system (10) numerically, we meet the same difficulty of 
truncating the system with respect to the discrete v-coordinate. This remark applies 
to both nonlinear and linear cases. There is no reason to assume any kind of 
regularity between subsequent an,” . However if the linear Vlasov equation is 
represented in the form (10) and integrated, we obtain a very regular pattern for 
the amplitudes an,v (v = 0, 1, 2 ,...) f or 1 arge v. An example is given in Fig. 1. 
The coefficients appear to be a discrete plot of an otherwise continuous function 
in v. 

FIG. 1. Plot of the real amplitudes a, of system (10) for time t = 20 a,-,’ for the following 
initial condition: f(x, v, t = 0) = l/2/21; exp(-@)[l + 0.1 cos $x]. This corresponds to a 
stable standing wave with wave length X = 411& (Ad = Debye length). The system (10) has been 
changed so that it represents the linearized Vlasov equation. The amplitudes for Y > 8 form a 
very regular pattern. . represents results when the maximum v was 10. x represents results when 
the maximum Y was 20, 50, and 100. The extrapolation used was of fourth order. 

It is therefore natural to guess the (v, + 1) coefficient by a polynomial extra- 
polation and thus close the system (10). This method worked very well for the 
linear Vlasov equation. Polynomials of order 0, 1,2, 3, and 4 were used, and the 
system (10) was truncated for v, equal to 200, 100, 50, down to v, = 10. We 
checked the real and imaginary part of w for the case of a stable standing wave, 
f0 being a Maxwellian. The real part of w was strictly invariant for all conditions. 
The imaginary part of o, representing Landau damping showed a relative deviation 
of dy/y = 0.8 % when v, was as low as 10. For t = 100~;: , this is equivalent to 
a deviation of 12 % of the amplitude of the electric field. Thus we have shown 
that contrary to the belief of Grant and Feix [7] the difficulty of cutoff can be 
avoided for the linear Vlasov equation. 

The question arises how this cutoff procedure works in the nonlinear case. 



NUMERICAL INTEGRATION METHODS OF THE VLASOV EQUATlON 59 

We found that it depends very much on the case treated. If the amplitudes of the 
electric fields are quite small the results will be similar to the linear limit. If the 
electric fields become so large that the homogeneous velocity distribution is 
changed appreciably, the truncation by extrapolation still stabilizes the system. 
The coefficients an,” do however no longer lie on a continuous curve but show some 
scattering which increases with increasing nonlinearity. Thus some inaccuracy is 
introduced by the truncation. We have found [9] however, that up to times 
t = 60~;: the inaccuracies thus introduced are small when v, = 80 or larger. 

We now consider the nature of the truncation instability and its stabilization. 

6. EIGENVALUE THEORY 

It is evidently the second term in Eq. (1) which prohibits the closure of system 
(10). Therefore the simplest equation in which we can study the problem of closuse 
is given by 

or in terms of the characteristic function, confining ourselves to one mode only, 

z+nk,$=O. 

The solution is clearly 

F( y, t) = F( y - nk,t, 0). 

When we write 

F(y, t) = g by(t) h”yve-1~2~2, 
v=o 

(12) 

the b, are proportional to the a,,, in the expansion (9) and the system resulting 
from Eqs. (12) and (13) is 

h,h + nkoP,+,(v + 1) bv+l - L,b,-,I = 0. (14 

We want to determine the eigenvalue spectrum and eigensolutions of this system 
and try the ansatz: 

b,(t) = 4, exp(iot) 
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which results in 

If we now choose 

hvlhv+l = i(v + 1) 

h, = ho/z%!, 

or 

we find that 

(15) 

(16) 

This is just the recurrence relation for the Hermite polynomials and so we can 
write 

fv = fk ($). 

For the infinite system (14) the eigenvalue spectrum is continuous and we may write 
the solution of Eq. (14) as 

b,(t) = j”+” g (5) A (*) e&W dw 
--m 0 

where the cylinder function z+$ is given by 

t,&, = He,(u) exp( -&v2), 

(17) 

b, is thus the Fourier transform of the function g& and under quite weak conditions 
on g, we have 

If the system (14) is truncated by the condition 

bN+&) = 0, p = 0, 1, 2 )...) (18) 

we find 

HeN c = 0. 
( 1 0 

The truncated system has now a discrete spectrum of eigenvalues. There are N 

tizg b,(t) = 0 
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eigenvalues and they are given by the zeros of the N-th Hermite polynomial, 
o = nk,puN;p = 1, 2, 3,..., N. The solution of the truncated system is now given by 

and the N values g(w,) specify exactly the N values b,(O); it is evident that b,(t) in 
Eq. (19) is an almost periodic function of time, contrary to the b,(t) in Eq. (17). 
We realize that the apparent numerical instabilities which Armstrong and other 
investigators have seen, are not so much numerical instabilities in the usual sense, 
but due to the attempt of representing a continuous eigenspectrum by a discrete 
finite spectrum. 

If the w, in Eq. (19) are densely spaced, it is to be expected that they form a 
good approximation to Eq. (17) for small times. For arbitrarily large times the 
approximation is bound to fail. 

One can remedy the situation by adding a small imaginary part to the eigenvalues 
wIL . Then the solution (17) is well approximated by Eq. (19) for small times by the 
truncated system. For large times the imaginary part of w, damps the solution 
sufficiently to avoid recurrence. One way of achieving this goal is to replace the 
truncation condition (18) by something else, e.g. an extrapolation We then obtain 

b N+l = ; (-1" 4,-, 
LL=O 

It has been reported above, that this method works very well for the linearized 
Vlasov equation. The explicit calculation of the resulting eigenvalues becomes 
quite involved, however, even for the simplest extrapolation formula. We therefore 
give only the result for a zero order extrapolation 

a n,N+1 = an,N 

for the truncated system (10) without the sum term. If the number N of coefficients 
a, is large, we find 

We have restricted ourselves to small p, such that j ,U j < 4/N. 
We can also prescribe explicitly the imaginary part by writing 

He,,, (9) = 0. 
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Expanding this into a Taylor series and using the differential relation for Hermite 
polynomials, we obtain 

He,,, (5) = -x (&)” ( N I ’ ) He,+,-z ($). (2% 

This is exactly equivalent to Eq. (22) because the Taylor series is finite. From 
Eq. (23), we conclude that 

hv+,hv+1(~) = -z y (&y hv+l-z(~) h-z . 
0 

This formula shows the same structure as Eq. (20): b,+1 is a linear function of the 
b,-, and the sign of the coefficients is alternating. Computer calculations using 
Eq. (24) with 1.5 < h < 2.5 also showed satisfactory results without any numerical 
instabilities. 

7. DAMPED MATRIX 

The methods of truncation discussed so far did not change the system of differ- 
ential equations (10). If we change it in such a way that the u~,~ with v close to N 
are heavily damped, their amplitude can never become large and a truncation is 
equivalent to a reasonable guess of an,N . This corresponds to a smoothing of the 
distribution function if the ripples in v exceed a certain steepness. The coefficients 
a, which have small v are only indirectly affected by the damping of the an,” 
w\kch have large v. The selective damping can, for example, accomplished by adding 
a term 

--EvzTa m.v (25) 

to the right side of Eq. (10). E is of the order N-2T and r = 1, 2, 3. 
The same approach has been chosen independently by Armstrong [S]. He has 

shown that the term (25) corresponds to the collision operator 

on the right side of the Vlasov equation (1). It is clearly seen that it smoothes 
preferentially the steep ripples of the distribution functionfin velocity space. 
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